
Assessing the Impact of Stochastic Perturbations in Cloud Microphysics using GOES-16
Infrared Brightness Temperatures

SARAH M. GRIFFIN AND JASON A. OTKIN

Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

GREGORY THOMPSON, MARIA FREDIANI, AND JUDITH BERNER

National Center for Atmospheric Research, Boulder, Colorado

FANYOU KONG

Center for Analysis and Prediction of Storms, Oklahoma University, Norman, Oklahoma

(Manuscript received 9 March 2020, in final form 6 May 2020)

ABSTRACT

In this study, infrared brightness temperatures (BTs) are used to examine how applying stochastic per-

turbed parameter (SPP) methodology to the widely used Thompson–Eidhammer cloud microphysics scheme

impacts the cloud field in high-resolution forecasts. Modifications are made to add stochastic perturbations to

three parameters controlling cloud generation and dissipation processes. Two five-member ensembles are

generated, one using the microphysics parameter perturbations (SPP-MP) and another where white noise

perturbations were added to potential temperature fields at initialization time (Control). The impact of the

SPP method was assessed using simulated and observed GOES-16 BTs. This analysis uses pixel-based and

object-based methods to assess the impact on the cloud field. Pixel-based methods revealed that the SPP-MP

BTs are slightly more accurate than the Control BTs. However, too few pixels with a BT lower than 270K

result in a positive bias compared to the observations. A negative bias compared to the observations is ob-

served when only analyzing lower BTs. The spread of the ensemble BTs was analyzed using the continuous

ranked probability score differences, with the SPP-MP ensemble BTs having less (more) spread during May

(January) compared to the Control. Object-based analysis using the Method for Object-Based Diagnostic

Evaluation revealed the upper-level cloud objects are smaller in the SPP-MP ensemble than the Control but a

lower bias exists in the SPP-MP BTs compared to the Control BTs when overlapping matching objects.

However, there is no clear distinction between the SPP-MP and Control ensemble members during the

evolution of objects, Overall, the SPP-MP perturbations result in lower BTs compared to the Control en-

semble and more cloudy pixels.

1. Introduction

An accurate depiction of the spatial and temporal

characteristics of clouds is necessary for skillful weather

and climate forecasts. Predictions of clouds are useful

for forecasting when and where severe weather may

occur (Mecikalski and Bedka 2006; Sieglaff et al. 2011;

Purdom 1993; Cintineo et al. 2013). Changes in cloud

cover affect daily temperatures, as they are negatively

correlated with the diurnal temperature range (Karl

et al. 1993; Dai et al. 1999). Accurate cloud predictions

are also necessary for climate modeling, as clouds

have a net cooling effect in the earth radiation budget

(Ramanathan et al. 1989; Harrison et al. 1990).

Clouds are very complex and often difficult to represent

accurately in numerical weather prediction (NWP) and

climate models. Nonlinear interactions between different

cloud hydrometeor species and the local thermodynamic

environment occur at scales that are much smaller than

those represented by most models. In recent years, cloud

microphysics schemes have become more sophisticated

due to improved understanding of cloud processes and

increased computational resources. One such micro-

physics scheme is the bulk microphysics parameteriza-

tion scheme developed by Thompson et al. (2004, 2008).
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Thompson and Eidhammer (2014) enhanced this mi-

crophysics scheme to an ‘‘aerosol-aware’’ scheme that

includes the explicit treatment of cloud droplet activation

and ice nucleation via aerosols. However, large uncer-

tainties still exist in microphysics schemes pertaining to

parameter and process uncertainty (White et al. 2017).

While it is of high socioeconomic value to provide

reliable forecasts of extreme and hazardous weather

events at the storm-scale, forecasting systems generally

have problems, with the actual observed event often

lying often outside the uncertainty predicted by the en-

semble spread (e.g., Berner et al. 2009, 2011). One reason

for the lack in ensemble spread lies in the need to truncate

the underlying equations at a particular grid scale with-

out representing subgrid-scale variability (Palmer 2001;

Berner et al. 2017). Several methods that have been de-

veloped to represent model error due to truncation errors

are now used routinely in operationalweather forecasting

(e.g., Sanchez et al. 2016; Leutbecher et al. 2017). These

can be categorized as multimodel ensembles, multipa-

rameter ensembles, as well as stochastic parameterization

schemes (Berner et al. 2017).

In this study, we will combine the multiparameter and

stochastic parameterization approach and perturb key

parameters in the Thompson–Eidhammer microphysics

scheme with a spatially and temporally varying pertur-

bation pattern (Berner et al. 2015). There is a long his-

tory of static parameter perturbations in weather and

climate modeling (e.g., Berner et al. 2015; Christensen

et al. 2015; Palmer 2019), with stochastic parameter

perturbations have been previously evaluated in other

ensemble systems (Bowler et al. 2008; Ollinaho et al.

2017). Since only the microphysical parameters are

perturbed in this study, the resulting scheme is called

Stochastic Parameter Perturbation (SPP) for Micro-

Physics, or short: SPP-MP.

Stochastic parameterizations have been used inmultiple

forecast studies. Jankov et al. (2019) used SPP to perturb

parameters in the planetary boundary layer scheme

in convection-resolving simulations using the High

Resolution Rapid Refresh model and found an improve-

ment in low-level wind forecasts. Watson et al. (2017) and

Subramanian and Palmer (2017) found that stochastic

parameterizations improved the accuracy of tropical pre-

cipitation and convection, but Subramanian and Palmer

(2017) also indicated the forecast for zonal winds was de-

graded when perturbing the boundary layer temperature.

Connelly (2018) used a stochastically perturbed physical

tendency (SPPT) scheme to analyze the predictability of

finescale snowbands in a 40-member Weather Research

and Forecasting (WRF)Model. However, no studies have

directly assessed the impacts of the SPP method on cloud

forecasts.

Detailed information about the horizontal distribution

of clouds can be obtained from satellite (IR) brightness

temperatures (BT). Prior studies have used satellites BTs

to evaluate the accuracy of the cloud field in high-

resolution numerical weather prediction model fore-

casts (e.g., Bikos et al. 2012; Cintineo et al. 2014; Feltz

et al. 2009; Grasso and Greenwald 2004; Grasso et al.

2008, 2014; Griffin et al. 2017a,b; Jankov et al. 2011; Jin

et al. 2014; Morcrette 1991; Otkin and Greenwald 2008;

Otkin et al. 2009; Thompson et al. 2016; Van Weverberg

et al. 2013). Traditional pixel-basedmetrics, such asmean

absolute error, can be used to assess the differences be-

tween the observed and simulated cloud fields. While

these methods are easier to implement, object-based

statistics such as the method for object-based diagnostic

evaluation (MODE; Davis et al. 2006a,b) can provide a

more detailed assessment of the forecast accuracy.

The purpose of the paper is to assess the impact of

SPP-MP applied to the Thompson and Eidhammer

(2014) microphysics scheme (hereafter TE14) on cloud

cover using high-resolution WRF Model forecasts, as it

is essential to develop perturbation methods that are

able to provide sufficient ensemble spread. This analysis

utilizes data from May 2017 and January 2018 to inves-

tigate potential differences in cloud characteristics dur-

ing the warm and cool seasons and to take advantage

of the new (Geostationary Operational Environmental

Satellite) GOES-16 Advanced Baseline Imager (ABI),

this analysis utilizes data from May 2017 and January

2018. Given the fine spatial resolution (3-km) of the

WRFModel used during this study, differences between

observed and simulated cloud fields will be assessed

using both pixel-based and object-based metrics. Pixel-

based metrics will be used to evaluate overall model

accuracy as well as the spread in the ensemble BTs,

while object-based statistics are used to assess the ac-

curacy of cloud features without penalizing for dis-

placement errors, as well as track the evolution of clouds

through time.

The results from paper will be broken down into two

sections. The first section analyzes the impact of the SPP-

MPover the entire domain via a pixel-basedmethodology.

The second section looks at the impact of the SPP-MP for

individual cloud features using an object-tracking method.

Sections for data and methodology will be presented be-

fore the results, and conclusions will follow.

2. Data

a. WRF Model

For the experiments performed during this study, we

used the Weather Research and Forecasting (WRF)

Model with the Advanced Research WRF dynamic
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solver (Skamarock et al. 2008), version 3.9.1.1. The

WRFModel has been used rather extensively in NOAA’s

annual Hazardous Weather Testbed Spring Forecast

Experiment (HWT-SFE; e.g., Clark et al. 2012, 2018). In

nearly the identical manner to prototype real-time WRF

forecasts that support the HWT-SFE, we configured

the model with 50 vertical levels and 3-km grid spacing

covering nearly all of the contiguous United States

(CONUS) along with the same physical parameteriza-

tions used in the operational High Resolution Rapid

Refresh (HRRR) model. This includes TE14 micro-

physics scheme, the Rapid Radiative Transfer Model

global version (RRTMG; Iacono et al. 2000), the Rapid

Update Cycle land surface model (Smirnova et al. 2016),

and the MYNN planetary boundary layer scheme

(Nakanishi and Niino 2004). The experiment design

was based on the HRRRmodel for the intended goal of

being possible to transition to operations. Running at

3-km grid spacing, HRRR omits the use of a convective

parameterization, since this resolution is relatively capa-

ble of explicitly representing convective-scale storms.

To study the sensitivity of brightness temperatures to

uncertainties in the microphysics parameters, the SPP-

MP scheme was developed with the aim of perturbing

key parameters in the TE14 microphysics scheme.

Previous work has found that the model can only hold

on to perturbations that have spatial and temporal

correlations (see Berner et al. 2017 and references

therein), which are designed to represent organized

nonlocal processes. Modifications were made to the

code so that the SPP-MP method could be used

to create a stochastically sampled, two-dimensional,

time-varying field of correlated parameter values fol-

lowing locally a Gaussian distribution with a prescribed

mean and standard deviation. This field is then used to

add spatially and temporally varying stochastic pertur-

bations to three processes listed below that control cloud

generation and dissipation processes in the TE14 micro-

physics scheme. These parameters were chosen because

they are known to be highly variable based on observa-

tional evidencewhile traditionally being set to a constant in

nearly all existing bulk microphysical parameterizations.

1) The graupel spectra y-intercept parameter in TE14 is

diagnostically determined by the graupel mass mix-

ing ratio and supercooled liquid water amount at

each grid point during the forecast.Most one-moment

bulk microphysics schemes (e.g., Rutledge andHobbs

1984; Hong et al. 2006) use a constant in space and

time single value for y-intercept even though obser-

vations have found it to vary by asmuch as 2–3 orders

of magnitude (e.g., Knight et al. 1982; Field et al.

2019). To account for this type of variability, the

stochastic perturbation field is scaled such that the

y-intercept value varies within plus or minus 1.5 or-

ders of magnitude, while also being bounded from

53 103 to 53 107m24. A low value of this parameter

could result in hail-like hydrometeors that fall very

rapidly while a very high value would bemore typical

of rimed snow. The implications to subsequent mi-

crophysical processes such as collection and spread

of convective anvil clouds are rather dramatic as

discussed in Gilmore et al. (2004).

2) The cloud water category in TE14 follows a gener-

alized gamma distribution (Verlinde et al. 1990)

with a shape parameter that gets diagnosed from

the predicted droplet number concentration (follow-

ing Martin et al. 1994). As such, this gives a shape

parameter that can vary in space and time; however,

the parameter remains highly uncertain in observa-

tions (Miles et al. 2000). To capture this variability,

the SPP-MP field is scaled between 63 before being

added to the previously diagnosed value. The gamma

distribution shape parameter effectively shifts the

mean size of cloud droplets such that it can directly

impact the warm-rain formation process (via auto-

conversion), which can subsequently affect cloud

longevity (Albrecht 1989), cloud albedo (Twomey

1974) and precipitation amounts (TE14).

3) In the atmosphere, nearly all cloud droplets and ice

crystals form on an aerosol particle. While the TE14

scheme explicitly predicts the potential aerosols that

serve as cloud condensation nuclei (CCN) and ice

nuclei (IN), there is obviously inherent uncertainty

with these predicted variables. Furthermore, there is

uncertainty in the prediction of the model vertical

velocity forcing, especially from considerations of

eddies that occur at scales much smaller than the grid

spacing. For this reason, the CCN and IN activation

code of TE14wasmodified to include the SPP field as

an addition to the gridscale vertical velocity when

retrieving a lookup table value of fraction of acti-

vated aerosols. The perturbations on vertical velocity

were bounded between 0 and 0.5m s21 and all per-

turbation values were offset by the SPP field mini-

mum since a downward vertical velocity would not

result in supersaturation, which is required in the

lookup tables for aerosol activation. As such, this

experiment means that CCN and IN activation can

only be increased from the experiment that does

not use SPP-MP. Since the predicted number con-

centration of cloud droplets directly impacts the

calculation of the gamma size distribution shape

parameter mentioned in 2 above, this could poten-

tially lead to a larger combined effect than would

occur if they were perturbed individually.
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Temporally and spatially correlated perturbations

were added to each of the above parameters using the

SPP-MP method. Here, we provide a brief overview of

the method with the reader referred to Thompson et al.

(2020, manuscript submitted to Mon. Wea. Rev.) for a

more detailed description. The perturbation patterns

generated by the SPP-MP are fully determined by three

parameters, including temporal decorrelation time, spa-

tial length scale, and the variance in gridpoint space.

These three variables used to define the wavenumber

dependent variance of a Gaussian white-noise process

(Thompson et al. 2020, manuscript submitted to Mon.

Wea. Rev.). As described in Thompson et al. (2020,

manuscript submitted toMon. Wea. Rev.), the stochastic

perturbations for a given variable and grid point are

drawn from a univariate Gaussian distribution centered

on the value of the deterministic parameter. The spatial

correlation constraint ensures that the perturbations at

adjacent grid points on average will have the same sign.

The temporal correlations allow the SPP-MP perturba-

tions to vary with time in a way that guarantees an as-

signed degree of memory based on the length of the

decorrelation time. For the experiments performed dur-

ing this study, the spatial and temporal decorrelation

lengths were identical for each of the three parameters,

and were set to 200km and 2h, respectively. These values

were chosen because they are representative of the scales

associated with deep convection and are consistent with

the high-spatial resolution used during this study.

b. Ensemble configuration

Two ensembles are run for each forecast initialization

time to assess the impact of the SPP perturbations on the

cloud field. The first is the SPP-MP ensemble consisting

of 5 members where time- and spatially varying SPP

perturbations were added to each of the three parame-

ters described above during the forecast.While wemade

it possible to test independently each of the three as-

pects, we decided to report only on the simulations with

all three SPP aspects enabled together. The application

of SPP within theWRFModel experiments is nearly the

same as Jankov et al. (2019) application into the HRRR

model except for the settings of time and spatial corre-

lation scales and perturbationmagnitudes. This SPP-MP

ensemble does not have a representation of initial con-

dition or lateral boundary condition uncertainties. To

compare the impact of SPP-MP, a Control ensemble was

generated by introducing white noise perturbations at

the initialization time to four ensemble members with

the unperturbed control initialization included as the

fifth member. The white noise was entirely uncorrelated

in (x, y, z) space with amaximummagnitude of 0.058C to

the potential temperature variable at any model level

within 800m of the land/water surface. The Control

ensemble was designed to compare the impact of adding

realistic perturbations to select cloud processes against

small initial condition perturbations. It is important to

note that the white noise perturbations have the po-

tential to trigger convection while the SPP-MP pertur-

bations can only have an impact when clouds are

present. So while the white noise perturbations are small

compared to realistic initial condition uncertainties,

they are able to capture an aspect of forecast uncertainty

that cannot be captured by SPP-MP perturbations alone.

Furthermore, while it is more operationally relevant to

produce initial and lateral boundary condition uncertainty,

we wish to reveal how small initial potential temperature

perturbations grow into much larger perturbations to

model fields similar to the problem of ‘‘seeding chaos’’

noted by Ancell et al. (2018). While we expect that en-

semble forecast spread can be caused by SPP-MP, we

postulate that some portion of the spread is completely

unrelated to SPP-MP and instead results from numerical

error growth for which the white noise experiments may

provide a baseline amount of spread assured to occur no

matter how any perturbations were introduced. Our en-

semble design of white noise experiments to analyze sen-

sitivity in convection-permitting models is similar to Flack

et al. (2019).

c. Brightness temperatures

We generate simulated BTs from WRF using the

Community Radiative Transfer Model (CRTM; Han

et al. 2006), version 2.3.0. Three-dimensional profiles of

pressure, temperature, and water vapor mixing ratio, as

well as cloud liquid, ice, rain, snow, and graupel mixing

ratios are passed to the CRTM from the WRF Model.

Cloud effective diameters are calculated consistent with

the particle size distribution assumptions inherent to the

microphysics scheme (Thompson et al. 2016). The file

containing the cloud optical properties data for scattering

calculations is CloudCoeff_TAMU-11 September 2014

bin (Yang et al. 2013). This file fixes errors in the CRTM’s

ice optical properties by updated the delta-fit coefficients

(Grasso et al. 2018). In addition, two-dimensional vari-

ables of latitude, longitude, surface temperature, height

and pressure, and land use are passed to the CRTM.

Surface emissivity for each IR band is created using

the University of Wisconsin High Spectral Resolution

Emissivity Algorithm (Borbas and Ruston 2010).

The satellite validation data used for this study is from

the GOES-16 Advanced Baseline Imager (ABI). This

sensor has a 2-km pixel spacing at nadir1 for IR channels,

1 Nadir is the location on Earth directly below the satellite.
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which is remapped to the 3-km WRF grid using an area-

weighted average of all the observed pixels overlapping

a given WRF Model grid box. Simulated ABI BTs are

compared to the observed ABI BTs from the GOES-16

satellite scan that starts just after the top of each hour.

d. Seasonal comparison

Specific days during twomonths were chosen to assess

the impact of the SPP-MP microphysics changes on the

simulated GOES-16 BTs, May 2017 and January 2018.

Thesemonths during warm and cool seasons were chosen

given potential differences inmeteorological regimes and

associated cloud characteristics. A representative snapshot

of the observed and simulatedGOES-16 10.3mmBTs can

be seen in Fig. 1a for May 2017 and Fig. 1b for January

2018. Cloud features are generally colder and smaller for

May 2017 compared to January 2018, though it is im-

portant to note that both large and small objects can oc-

cur during both months. The overall difference in cloud

features during these two months, together with the two

ensembles, will allow us to determine if the SPP pertur-

bations have different forecast impacts depending upon

if the clouds are primarily convectively or synoptically

driven. A total of 10 different 48-h forecasts for each

month are analyzed, with forecasts initialized at 1200

UTC on 1, 7, 9, 15, 17, 19, 21, 23, 25, and 27May 2017 and

at 0000 UTC on 7, 9, 11, 13, 19, 21, 23, 25, 27, and 29

January 2018. Forecast hours 0 to 5 are not included in

this analysis to reduce the impact of model spinup on the

forecast cloud fields, which start from a cloud-free anal-

ysis. The choice of starting with forecast hour 6 for the

analysis is somewhat arbitrary as cloud spinupmay not be

complete until after this time.

3. Methodology

This analysis will utilize two types of metrics when

assessing the impact of the SPP-MP perturbations on the

simulated BTs: pixel-based metrics and object-based

analysis. Pixel-based metrics are easy to implement;

however, they are susceptible to the well-known ‘‘dou-

ble penalty’’ problem if features such as clouds are

spatially displaced. Object-based methods can poten-

tially account for this displacement, as well as provide

other interesting analysis options such as tracking ob-

jects through time.

a. Pixel-based metrics

1) DIMENSIONED METRICS

Two pixel-based dimensioned metrics are used to

assess the impact of the SPP-MP on simulated BTs.

FIG. 1. Comparison of observed and simulated GOES-16 ABI 10.3mm brightness temperatures at (a) 0000 UTC 17 May 2017 and

(b) 2100 UTC 21 Jan 2018. The simulated images in (a) are from 36-h forecasts initialized at 1200 UTC 15 May 2017 and a 21-h forecast

initialized at 0000 UTC 21 Jan 2018 in (b). The simulatedGOES-16ABI 10.3mm brightness temperatures are from a randomly selected

SPP-MP and Control ensemble member.
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These metrics are considered ‘‘dimensioned’’ as they

have the same units as the variable of interest (Willmot

and Matsuura 2005). Overall model accuracy will be

assessed using the mean absolute error (MAE). The

MAE is used instead of the root-mean-square error

because errors in the ensemble BTs do not follow a

normal distribution based on a Shapiro–Wilk test (Willmot

and Matsuura 2005; Chai and Draxler 2014). MAE is cal-

culated using the following equation:

MAE5
1

N
�
n

i51

jF
i
2O

i
j , (1)

where F(O) represents the simulated (observed) BTs. A

MAE of zero is perfect forecast.

Bias in the ensemble simulated BTs is calculated using

the following equation:

Bias5
1

N
�
n

i51

(F
i
2O

i
) . (2)

A positive (negative) bias indicates the simulated BTs

are too high (low) compared to the observed BTs. For

both the MAE and bias, a 95% confidence interval

around the difference between the verification metrics

indicates whether the forecasts are statistically different

from each other. The confidence intervals are calculated

using bootstrap sampling with replacement. Each boot-

strap sample contains 10000 data points, resampled 1000

times, and the resulting interval represent the 2.5th and

97.5th percentiles. If the confidence interval surrounding

the differences of the metric in question, for example

the SPP-MP ensemble mean BT bias minus the Control

ensemble mean BT bias, does not encompass zero, a

statistically significant difference exists between the en-

semble mean BTs (Gilleland 2010). A 95% confidence

interval, which is the most common, is used to identify

statistical significance (Xu 2006).

2) CONTINUOUS RANKED PROBABILITY

SKILL SCORE

To identify how closely the BTs from the five mem-

bers of each ensemble represent the observed BT, the

continuous ranked probability score (CRPS) is utilized.

TheCRPS compares the cumulative distribution function

(CDF) of the simulated ensemble BTs to the observed

BT at a given pixel. The CRPS can be decomposed into

CRPSreliability and CRPSpotential, and equations for these

parameters can be found in Hersbach (2000). The con-

tinuous ranked probability skill score (CRPSS) is used to

compare the CRPS for the SPP-MP and Control en-

sembles. The CRPSS is computed using the following

equation:

CRPSS5 12
CRPS

SPP2MP

CRPS
Control

. (3)

The CRPSS ranges from21 to 1, with a positive CRPSS

indicating the SPP-MP ensemble BTs more closely rep-

resent the GOES BT than the Control ensemble BTs.

The CRPS can be decomposed into CRPSreliability and

CRPSpotential. CRPSreliability is closely connected to the

rank histogram of an ensemble. It tests the ensemble

statistical consistency (the observation frequency within

members is proportional to the ensemble size), in ad-

dition to weighting the bin width (sharper ensembles

yield better reliability compared to equally accurate but

less sharp ensembles). CRPSpotential is sensitive to the

range of ensemble BTs. The narrower the ensemble

system is, the lower the CRPSpotential, assuming the en-

semble system encloses the observation (Hersbach 2000).

However, it is also sensitive to too many or too large of

outliers. A higher CRPSpotential will be seen for an en-

semble system with outliers farther from the observation

if the observation is not enclosed in the ensemble spread.

b. Object-based metrics

Upper-level cloud objects are identified using

MODE (Davis et al. 2006a,b). MODE identifies and

matches objects in two different fields (e.g., observed

and simulated data). While the MODE process is fully

described in Davis et al. (2006a), a short outline is

provided here for context as was done in Griffin et al.

(2017a,b):

1) Identify objects by smoothing the simulated and

observed BT fields.

2) Calculate various object attributes like distance be-

tween object centers and ratio of object sizes for each

observed and forecast cloud object.

3) Match forecast and observed cloud objects using a

fuzzy logic algorithm.

4) Output attributes for individual objects and matched

object pairs for assessment.

The convolution radius used for both the observed and

simulated BTs is 5 grid points (15 km) based on Griffin

et al. (2017a). This radius allows for the analysis of small-

scale storms, since Cai and Dumais (2015) state a range

of 2–8 grid points as identifying convective storm objects

in ;4-km resolution radar imagery.

The similarity between matching simulated and ob-

served in MODE objects is calculated by computing an

interest value (Developmental Testbed Center 2014).

Interest values are a weighted combination of the object

pair attributes. They range from 0 to 1, with one being a

perfect match. The attributes and user-defined weights

applied in this study, similar toGriffin et al. (2017a,b), are
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shown in Table 1. Again, distance and size comparison

between the objects is prioritized in this analysis. More

emphasis is placed on the displacement between the

centroids of the objects rather than their edges, and the

ratio of the objects’ areas instead of the ratio of the in-

tersection area of objects. The ratio of the intersection

area can be artificially high when a larger object fully

encloses a smaller object.

Tracking the evolution of attributes associated with

matching cloud object pairs is accomplished using an

extension of MODE, known as MODE time domain

(MODE-TD; Bullock 2011). Overall, this analysis in-

cludes 13 objects from May 2017 identified using varied

subjectively determined BTs, which can be seen in

Table 2. The sample is limited to 13 objects because the

initiation of the object must be clearly identified in the

GOES observations and therefore cloud patterns that

progress throughout the forecast are not considered.

Object tracking begins when either the observed or

simulated object is identified byMODE-TD at the given

threshold. An example of using MODE-TD to track

objects can be seen in Fig. 2. In this figure, the simulated

object is first tracked two hours before the observed

object appears, and tracking stops when the forecast

cycle ends. Object tracking stops when a given forecast

cycle ends (seven cases), when either the simulated or

observed objects mergewith another object (three cases),

or when the observed object dissipates (three cases). The

thresholds in Table 2 are chosen to maximize the time

objects remain discrete and therefore trackable. Objects

from January 2018 are not included in this analysis be-

cause the initiation time of the larger-scale features could

not be identified.

4. Results

a. Pixel-based metrics

1) DIMENSIONED METRICS

The MAE for the SPP-MP and Control ensemble

mean 10.3mm BTs for May and January can be seen in

Fig. 3. In Fig. 3, the top of each plot presents the MAE

while the lower plot indicates the confidence interval

envelope. For May, The SPP-MP perturbations have

little effect on the accuracy of the ensemble mean BTs.

In January, the SPP-MP ensemble mean BTs have lower

overall error. Both the SPP-MP and Control ensemble

mean BTs are more accurate for January compared to

May, due to the smaller-scale features observed in May

beingmore difficult to forecast (Wolff et al. 2014; Griffin

TABLE 1. User-defined weights and brief description of the object pair attributes used in this analysis.

Object pair attribute User-defined weight (%) Description

centroid_dist 4 (25.0) Distance between objects’ ‘‘center of mass’’

boundary_dist 3 (18.75) Minimum distance between the objects

convex_hull_dist 1 (6.25) Minimum distance between the polygons surrounding the objects

angle_diff 1 (6.25) Orientation angle difference

area_ratio 4 (25.0) Ratio of the simulated and observed objects’ areas (or its reciprocal,

whichever yields a lower value)

int_area_ratio 3 (18.75) Ratio of the objects’ intersection area to the lesser of the observed or

simulated area (whichever yields a lower value)

TABLE 2. Start time, end time, and BT threshold of the 13 objects tracked using MODE-TD. Bold rows indicate objects with tracks

terminated by the end of the forecast cycle and italicized rows indicate object tracks terminated due to merging either the simulated or

observed object merging with another object.

Start date Start time (UTC) End date End time (UTC) BT threshold (K)

3 May 2017 0100 3 May 2017 1200 220
8 May 2017 1800 9 May 2017 0800 220

8 May 2017 2100 9 May 2017 1200 220

10 May 2017 1600 11 May 2017 0700 220

15 May 2017 2200 16 May 2017 0600 220

16 May 2017 1800 17 May 2017 0400 220

17 May 2017 0200 17 May 2017 0800 220

18 May 2017 1800 19 May 2017 0800 220

19 May 2017 0800 19 May 2017 1200 215
26 May 2017 0900 27 May 2017 1200 225

26 May 2017 2100 27 May 2017 1200 220

27 May 2017 0300 27 May 2017 1200 220

28 May 2017 2000 29 May 2017 1200 220
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et al. 2017a), and a distinct diurnal cycle is observed with

higher error between 2000 and 0000 UTC. For both

months, the difference between the MAE is not statis-

tically significant. However, this is not necessarily un-

expected. The perturbations from SPP-MP are only

active when clouds form, which in turn means that per-

turbations are limited spatially and temporally. Therefore,

a conditional MAE is calculated for only pixels where ei-

ther the ABI or any ensemble member 10.3mm BT is

lower than a given threshold. As this BT threshold de-

creases, the ensemble mean BT MAE increases and con-

tinues to be higher for May compared to January (not

shown), further illustrate that smaller-scale and colder

cloud features are harder to predict in both ensembles. The

difference between the SPP-MP and Control ensemble

mean BTs MAEs can be seen in Fig. 4. As the BT

threshold decreases, the magnitude of the difference be-

tween the SPP-MP and Control ensemble MAE grows.

The positive (negative) difference for May (January) in-

dicates the SPP-MP is producing less (more) accurate BTs

compared to the Control ensemble. However, these dif-

ferences are also not statistically significant at the 95th

percentile.

Bias in the SPP-MP and Control simulated 10.3mm

BTs can be seen in Fig. 5. The positive bias for bothMay

and January indicates that the simulated BTs are too

high overall compared to the observedGOESBTs. SPP-

MP ensemble mean BTs are lower than the Control

ensemble mean BTs, though, based on the smaller pos-

itive bias. For the January case, the ensemblemean SPP-

MP BTs are lower than the Control ensemble mean BTs

in a statistically significant way. At lower BT thresholds

(not shown), the average bias for both May and January

becomes rather negative, and the bias for the SPP-MP

ensemble mean BTs is more negative compared to the

bias for the Control ensemble mean BTs. To identify

FIG. 2. Example of an object tracked usingMODE-TD from convective initiation in the simulated imagery to the end of the forecast cycle.

GOES object is plotted and SPP-MP (Control) ensemble member objects are outlined in gray (blue).
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why the bias switches from positive to negative for

lower BT thresholds, Fig. 6a displays the average

difference between the percent of BTs lower than a

given threshold for each ensemble and the GOES

observation. Red (blue) squares indicate where a

higher percentage of GOES (ensemble) pixels are

lower than the BT threshold. Biases are mostly posi-

tive over the full domain because a higher percentage

of GOES BTs are lower than 270K, and therefore a

larger percentage of ensemble BTs are higher than

270K compared to GOES. For instances where a

negative bias is evident over the full domain, more

ensemble BTs are lower than 260K compared to

forecast hours with positive biases. Negative biases

are observed at lower BTs because more ensemble

BTs are lower than these thresholds. Therefore, both

ensembles are not producing enough low-level clouds

or optically thin cirrus clouds while producing too

many thick upper-level clouds. However, the SPP-MP

ensemble does produce fewer upper-level clouds for

some forecast hours, as seen in the red squares for the

lowest BTs. The SPP-MP ensemble produces more

FIG. 3. Line plot of GOES-16 ABI 10.3mm brightness temperature mean absolute error

(MAE) for (top) May 2017 and (bottom) January 2018 based on forecast hour. The cyan en-

velope represents the 95% confidence interval around the difference between the SPP-MP and

Control ensemble MAE. If the envelope does not encompass zero, a statistically significant

difference exists.
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BTs lower than 270K compared to the Control en-

semble, as seen in Fig. 6b.

There are two potential hypotheses for explaining

the overall lower BTs with the SPP-MP compared to

the Control BTs, as seen in theMBE in Fig. 5. The first

hypothesis is that the SPP-MP ensemble contains

more clouds, resulting in a lower domain-average BT.

The second hypothesis is that the SPP-MP ensemble

produces approximately the same number of clouds as

the Control ensemble, but that these clouds are colder

due to their microphysical composition or are located

at a higher (e.g., colder) altitude. To determine if ei-

ther or both of the processes contributes to the lower

SPP-MP BTs, the distribution of cloud liquid, snow,

and ice water content is analyzed for the January en-

semble members. Figures 7a and 7b show composite

profiles from the SPP-MP and Control ensembles for

an arbitrarily selected forecast. The composite profile

from each ensemble is calculated using the same 5000

data points from all 5 ensemble members, or 25 000

profiles. Collectively, the 5000 data points must have a

BT lower than 250K in all 10 ensemble members.

In addition, the absolute difference between the ensemble

mean BTs of these 5000 data points must be greater

than 0.25K.

As seen in Fig. 7c, larger snow content above 400hPa is

associated with lower BTs. To verify this is not a result of

the arbitrarily selected forecast displayed in Fig. 7, the

process used to create Fig. 7 was repeated to create com-

posite profiles from 50 random forecasts where the forecast

hour is 6 and higher. Of these 50 composite forecast pro-

files, 66% (33 profiles) have higher snow content associated

with lower BTs. Therefore, it is assumed that higher snow

content contributes to lower BTs. Based on these

profiles, a snow content threshold of 1026 kg kg21 above

400 hPa is used to identify an upper-level cloud. This

threshold identified 79.5% (63.0%) of SPP-MP (Control)

profiles used to generate Fig. 7 as a cloud.

When analyzing the full dataset, the total snow

content for cloudy pixels above 400 hPa is larger

for the SPP-MP ensemble compared to the Control.

However, the SPP-MP ensemble also has more pixels

exceeding this snow content cloud threshold, similar

to Figs. 7a and 7b. When dividing the total snow

content by the number of pixels exceeding the snow

content threshold, the SPP-MP ensemble has less

FIG. 4. SPP-MP minus Control Mean absolute error for ensemble mean 10.3mm brightness

temperature for 6 different brightness temperature thresholds.
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snow above 400 hPa per pixel than the Control.

Therefore, the lower BTs in the SPP-MP are due to

the SPP-MP forecasts producing more cloud pixels

instead of lower BTs where clouds exist. This can be

observed in Fig. 6b, as more Control ensemble pixels

are seen for the lowest BTs.

2) CONTINUOUS RANKED PROBABILITY

SKILL SCORE

The comparison between the CRPSS of the SPP-MP

and Control ensembles for the 10.3mm BTs can be

seen in Fig. 8. During May, the CRPSS is negative for

about 61% of all forecast hours, indicating that the

SPP-MP ensemble has lower skill than the Control

ensemble. For January, the SPP-MP ensemble is more

skillful, shown by the positive CRPSS observed in

over 75% of the forecast hours. A lower CRPSS can

either be the result of a reduction in ensemble spread

width or improvement in accuracy, or a combination

of both. First, the SPP-MP ensemble spread could

be wider than the spread in the Control ensemble.

Another explanation for a negative CRPSS is that the

observed BT is outside the range of the SPP-MP en-

semble BT CDF more often compared to the Control.

Decomposing the CRPS into CRPSreliability and

CRPSpotential, the SPP-MP ensemble has a lower

CRPSreliability value than the Control ensemble for

35% (73%) of May (January) forecast hours (not

FIG. 5. As in Fig. 3, but for GOES-16 ABI brightness temperature bias.
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shown). These overall less reliable SPP-MP forecasts

in May are likely due to the ensemble not enclosing

the observed BTs, as the SPP-MP ensemble pixels do

not enclose the observed BT in 70.4% (289 out of

410) of the forecast hours and initialization times. In

January, this percentage is reduced to 49.8% (214 out

of 430; more forecast hours are available in January as

seen in Fig. 8). The CRPSpotential is lower for the SPP-

MP ensemble than the Control for 57% (48%) of May

(January) forecast hours (not shown). This lower

CRPSpotential for the SPP-MP ensemble in May is due

to a narrower spread in the ensemble BTs compared

to the Control ensemble when both ensemble systems

encompass the observation. Overall, more pixels ex-

hibit a smaller spread in the SPP-MP ensemble spread

compared to the Control for 75.6% (32.1%) of fore-

cast hours and initializations in May (January). When

the observed BT is outside of the ensemble system, these

smaller outliers can also influence the CRPSpotential. Based

on an example of the CRPS for the SPP-MP and

Control ensembles in Fig. 9, valid at 0700 UTC 11May

2017, the CRPS is the highest around the edges of

the cloud objects. Therefore, it is possible the cloud

edges in the SPP-MP ensemble are less accurately

defined during May compared to the Control en-

semble, which could result in a distribution of BTs

FIG. 6. (a) Average of percent of pixels with a 10.3mm BT lower than a given threshold for each ensemble minus the percent of pixels

with a BT lower than a given threshold for the GOES observations. Red (blue) squares indicate where a higher percentage of GOES

(ensemble) pixel BTs are lower than the BT threshold. (b) Percent change between SPP-MP and Control ensemble for forecast hours

averaging at least 1000 pixels smaller than the given threshold. Red (blue) squares indicate where a higher percentage of SPP-MP

(ensemble) pixel BTs are lower than the BT threshold.
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that does not encompass the observed BT and a poorer

reliability.

3) BRIGHTNESS TEMPERATURE DIFFERENCES

Brightness temperature differences (BTD) between

two satellite bands can be used to examine how

well the SPP-MP and Control ensembles represent

observed cloud properties, such as cloud top height

and hydrometeor phase. Cloud top height is exam-

ined using a 6.9–11.2mm BTD (Cintineo et al. 2014),

where strong water vapor absorption at 6.9mm com-

bined with 11.2mm BTs that generally decrease with

height results in negative BTDs. The largest 6.9–

11.2mm BTDs generally occur in clear-sky regions

(Mecikalski and Bedka 2006), with progressively smaller

BTDs as the cloud top height increases. Discriminating

between liquid and ice clouds can be done using

an 8.4–11.2mm BTD, as absorption for ice (water)

is higher (lower) at 8.4mm compared to 11.2mm

(Ackerman et al. 1990; Strabala et al. 1994; Baum

et al. 2000). Ice clouds are characterized by a positive

8.4–11.2mm BTD, while the reverse is true for water

clouds (Otkin et al. 2009).

A two-dimensional histogram of 6.9–11.2mm BTD

compared to the 11.2mm BT can be seen in Fig. 10.

Only pixels with an 11.2mm BT colder than 270K are

shown to focus on cloudy pixels. Overall, the shape

of the SPP-MP and Control ensemble histograms

matches the observation for both May and January.

One notable exception is 6.9–11.2mm BTDs that are

greater than 0K for the May BTs (Figs. 10g,h). A

positive 6.9–11.2mm BTD is indicative of overshoot-

ing clouds exceeding the tropopause height (Schmetz

et al. 1997). Both the SPP-MP and Control ensembles

have more pixels exceeding the 0K BTD threshold

than the observations. This indicates convection may

be too vigorous in the model forecasts regardless of

which perturbation method is used, which could be a

consequence of the model’s low vertical resolution

(Roeckner et al. 2006). The SPP-MP has a lower

probability of pixels exceeding the 0K BTD threshold

than the Control ensemble, but this difference is small

and does not appear on the difference plot (Fig. 10i).

For January, the peak in 6.9–11.2mm BTDs greater

than 0K is centered between 230 and 250K, with a

positive 6.9–11.2mmBTD existing for pixels as high as

270K (Figs. 10d–f). Positive 6.9–11.2mm BTD can

also be a result of clear-sky inversions over cold sur-

face 11.2mm BTs (Ackerman 1996). The SPP-MP

ensemble has more low-BT pixels with a less nega-

tive 6.9–11.2mm BTD compared to the Control for

both months (Figs. 10i,l). As the 11.2mm is an IR

window channel like 10.3mm, this corresponds with

the results indicating that the SPP-MP 10.3mm BTs

are overall lower than the Control BTs. The reduction

in the lowest BTs for the SPP-MP ensemble can be

seen in the Figs. 10i and 10l, as a higher probability

of BTs lower than 220K is observed for the Control

FIG. 7. Composite of 5000 random vertical profiles of cloud liquid water content, cloud ice water content, and cloud snow water content

from a randomly chosen forecast. The GOES-16 ABI 10.3mm BT for each pixel must be lower than 250K.
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ensemble. The SPP-MP ensemble also extends the

range of 6.9–11.2mm BTD for a given 11.2mm BT

compared to the Control.

The discrimination between ice and water clouds

can be seen in the two-dimensional histogram of 8.4–

11.2mm BTD compared to the 11.2mm BT in Fig. 11.

One immediate observation is the high probability

of positive BTD for both May and January SPP-MP

and Control ensembles compared to the observations

(Figs. 11b,c,e,f). Therefore, both of the ensembles are

producing too many ice clouds. The SPP-MP ensem-

ble has slightly more of these ice clouds compared to

the Control, especially for May (Fig. 11i), potentially

due to a negative bias in the simulated 11.2mm BTs.

By averaging the difference between CDFs of the

simulated and observed 8.4mm BTs, and doing the

same for the 11.2mm BTs, it was found that the de-

parture between the simulated and observed 11.2mm

BTs is lower than the 8.4mmBTs. The 8.4mm is centered

on a weak water vapor absorption line (Ackerman et al.

1990), potentially making it less susceptible to negative

biases from the clouds. These lower 11.2mm BTs result

in a positive 8.4–11.2mmBTD and an overabundance of

ice clouds. There is also a notable lack in water clouds in

May for 11.2mm BTs between 230 and 280K. At higher

BTs, both the SPP-MP and Control histograms better

match the observations.

b. Object-based metrics

To determine whether the clouds from each ensemble

forecast accurately represents cold, upper-level cloud

objects in theGOES-16 imagery, objects from simulated

and observed 10.3mm BTs are identified using a 235K

threshold in MODE. As seen in Fig. 12, on average

slightly more cloud objects are simulated in the SPP-MP

ensemble than in the Control during May; however, this

difference in not statically significant. This would help

explain the negative CRPSS, as more clouds could result

in more cloud edges and therefore increase the CRPS. A

diurnal cycle in the number of objects also exists in May.

Both ensembles produce fewer cloud objects compared

to the observations from approximately 1800–0000 UTC,

or late afternoon local time, and too many objects during

all other times. In January, SPP-MP has fewer objects

compared to the Control and a mostly lower CRPS.

Compared to the observations, the median number of

simulated objects in both ensembles are similar during

May but much lower in January. However, the area en-

compassed by the simulated objects is much larger than

the area of observed objects for both ensembles in both

FIG. 8. Continuous ranked probability skill score (CRPSS) for (top) May 2017 and (bottom) January 2018. Blue indicates the CRPS for

the SPP-MP ensembles is better than the CRPS for the Control ensembles. Squares with backslashes denote times with missingGOES-16

ABI data, which were considered preliminary during this time period.
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months (Fig. 13), consistent with the negative bias in the

10.3mm BTs. During May, about 44% of the forecast

hours have a smaller average object size in the SPP-MP

ensemble compared to the Control ensemble. During

January, this occurs in only 14% of forecast hours.

Spatial displacement errors between the observed

and simulated cloud objects can be removed by cen-

tering objects using the object centroid latitude and

longitude identified by MODE. An example can be

seen in Fig. 14. In Fig. 14a, the observed object is

about a half degree north of the simulated object. The

differences between the observed and simulated BTs

before and after the objects have been overlaid on

each other can be seen in Figs. 15b and 15c, respec-

tively. To keep this analysis homogeneous, neither the

observed nor the 10 simulated BTs objects can touch

the domain boundary or have an interest score of zero,

and at least one match between the observed and

simulated objects must have an interest score higher

than 0.65. It is important to note that this object-based

methodology requires an object to exist in both the

observed and simulated BT. This analysis uses be-

tween 24 and 82 objects, depending upon forecast

hour and month.

The 10.3mm BT MAE for cloud objects colder than

235K can be seen in Fig. 15. Unlike the assessment over

FIG. 9. Continuous ranked probability score valid at 1200 UTC 9 May 2017.
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FIG. 10. Histogram ofGOES-16ABI 6.9–11.2mm brightness temperature differences plotted as a function

of the ABI 11.2mm brightness temperature for (top) May 2017 and (bottom) January 2018. The difference

between the SPP-MP and Control histograms can be seen in the bottom row for (top) May 2017 and (bottom)

January 2018.
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FIG. 11. As in Fig. 10, but for GOES-16 ABI 8.4–11.2mm brightness temperature differences.
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the full domain, the SPP-MP BTs are now on average

more accurate than the Control ensemble BTs, indi-

cating the SPP-MP BTs better represent the observed

BTs for cold clouds once spatial displacement errors

have been removed. Since the actual objects area is

only the area within the black line, see Fig. 14a for an

example, but analysis includes all the colored area,

errors can be caused by differences in the actual ob-

served and simulated object sizes. The ratio of the

total observed object sizes to the simulated object

sizes is called the simulated area ratio, and values less

than one indicate the total simulated object size is

larger. While most simulated area ratios are lower

than 1, indicating larger simulated objects, there is no

correlation between the MAE and simulated area

ratio inMay. Therefore, the error in the BTs identified

by the MAE cannot be described by the difference in

object sizes. However, in January, moderate correla-

tion is observed, with higher MAEs associated with

higher area ratios.

The 10.3mmBT bias for the simulated cloud objects is

shown in Fig. 16. For both May and January, the SPP-

MP has a more negative/less positive bias than the

Control, indicating that the BTs are lower for the SPP-

MP. However, these biases are lower compared to those

of pixels with BTs lower than 235K over the full domain.

The bias is highly correlated with the simulated area

ratio. Smaller simulated area ratios usually result in

more enhanced negative biases, as the simulated object

is larger, and therefore potentially colder, than the ob-

servation. January cloud objects exhibit a positive bias,

and the simulated area ratio is above one in some

forecast hours.

The evolution of several attributes associated with

cloud objects can be seen in Fig. 17. Figure 17a de-

picts the area ratio of matched observed and simu-

lated objects. A ratio of 100%, represented by the

dashed line in Fig. 17a, indicates that the observed

and simulated objects are the same size. Simulated

(observed) objects are larger below (above) the dashed

line, with the area ratio becoming smaller until it

reaches 0% at the top and bottom of the graph.

Overall, once an observed object develops, it is on

average larger than the simulated object. This con-

tinues for about the first 5 h of an observed object’s

lifetime before becoming smaller than the simulated

FIG. 12. Box-and-whisker plot of number ofMODEobjects for (top)May 2017 and (bottom)

January 2018. Gray represents the number of GOES-16ABI objects while red (blue) indicate

the number of SPP-MP (white noise) ensemble objects.
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object. The ratio of observed and simulated objects

is smaller (closer to the top of the graph) in the

SPP-MP ensemble members compared to the Control,

which appears to corroborate the hypothesis that

SPP-MP objects are smaller than the Control objects.

Only later in an observed objects’ life cycle is the

paired Control object smaller than the SPP-MP ob-

ject, on average. However, these differences between

the SPP-MP and Control object sizes are not statisti-

cally significant based on a Welch’s test (Welch 1947).

Figures 17b and 17c depict the distance between the

centers of paired objects and overall interest scores of

paired objects, respectively. Once the observed object

has developed, the distance between the observed and

simulated centers of objects is nearly constant for

about the first nine hours before increasing with time.

Interest scores are highest 2–9 h after the observed

object develops, where the distance between the cen-

ters of objects is low and the area ratio is closest to

100%. The interest scores then decrease with increas-

ing observed time. This result is not unexpected be-

cause lower interest values are associated with greater

displacement errors between the simulated and ob-

served objects, which tend to increase during the

forecast (Griffin et al. 2017b). However, there is no

clear distinction between the SPP-MP and Control

ensembles in either interest score or distance between

the center of objects.

5. Conclusions

In this study, the impact of using a stochastic per-

turbed parameterization (SPP) to add realistic per-

turbations to select cloud generation and dissipation

processes in the TE14 microphysics scheme is ana-

lyzed. This is accomplished by comparing simulated

and observed GOES-16 ABI BTs from specific days

during May 2017 and January 2018. Two different

ensembles are created from theWRF output, and each

ensemble is run for 48 forecast hours. The first is a five-

member ensemble where the graupel y-intercept pa-

rameter, cloud water shape parameter, and the number

of cloud condensation nuclei are allowed to vary, re-

ferred to as the SPP-MP ensemble. A second Control

ensemble is generated by introducing spatially uncor-

related white noise perturbations in the lowest 800m of

the troposphere at the initialization time to four en-

semble members and includes the control (unper-

turbed) initialization as the fifth member. The Control

ensemble was designed to compare the impact of

adding realistic perturbations to select cloud pro-

cesses against small initial condition perturbations. It is

FIG. 13. As in Fig. 12, but for area of MODE objects.
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important to note that the SPP-MP perturbations

can only impact the forecast when clouds are pres-

ent, whereas the white noise perturbations have

the potential to trigger convection in areas where

no convection was present. Therefore, we did not

attempt a full description of forecast uncertainty,

which is additionally influenced by initial and lateral

boundary condition uncertainty, as well as uncer-

tainty in all other physical parameterization schemes.

Instead, we focus on the quantification of uncertainty

related to parameter uncertainties solely in the mi-

crophysics scheme.

FIG. 14. Example of removing displacement using the center latitude and longitude of MODE images. (a) Two

matching object that are displaced. Difference between BTs when the objects (b) are not and (c) are overlapped.
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FIG. 15. Line plot of mean absolute error (MAE) and area ratio for the cloud objects

containing ABI 10.3 mm brightness temperatures lower than 235 K as identified by MODE

for (top) May 2017 and (bottom) January 2018 based on forecast hour. Objects are overlaid

using the method from Fig. 14. The cyan envelope represents the 95% confidence interval

around the difference between the SPP-MP and Control ensemble MAE. If the envelope

does not encompass zero, a statistically significant difference exists.
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Overall, it is found that the SPP-MP perturbations

result in lower BTs compared to the Control en-

semble and more cloudy pixels. Some specific find-

ings related to these lower BTs are summarized as

follows:

1) Over the full domain, the SPP-MP ensemble mean

BTs have a lower mean absolute error (MAE) in

January 2018 and similar MAEs in May 2017 when

compared to the Control ensemble. The SPP-MP

ensemble members have a lower overall positive bias

FIG. 16. As in Fig. 15, but for Bias.
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compared to the Control by producing more low-

level clouds or optically thin cirrus. While both en-

sembles have an excess of thick upper-level cloud,

the SPP-MP ensemble does produce fewer clouds

with 10.3mm BTs lower than 225K compared to the

Control.

2) The SPP-MP ensemble produces more ice clouds than

the Control ensemble and observations, especially

FIG. 17. (a) Area ratio between, (b) distance between the centers of, and (c) interest score between paired

observed and simulated objects as a function of observed object life cycle. Red (blue) lines represent that SPP-MP

(Control) ensemble members. The solid line is the average over all ensemble members, with the dashed line

representing 6one standard deviation.
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during May. This is evidenced by the low bias in

the 11.2mm BTs compared to the 8.4mm and a

positive 8.4–11.2mm brightness temperature differ-

ence (BTD). Using a 6.9–11.2mmBTD, it is observed

that SPP-MP ensembles produce less vigorous con-

vection than the Control ensembles, but convection

in both ensembles is too vigorous compared to the

observations.

3) More cloud objects are produced by the SPP-MP in

May 2017 compared to the Control, with the opposite

observed in January 2018. These additional cloud

objects potentially result in a higher continuous

ranked probability score (CRPS) when compared to

the Control. In May, the SSP-MP lower skill is likely

due to the ensemble not enclosing the observed BTs,

especially along the edges of observed clouds. In

January, the SPP-MP ensemble BT distribution

better represents the observed BT than the Control

ensemble BT distribution.

4) When looking at matched simulated and observed

cloud objects defined using a 235K threshold (that do

not touch the domain boundary), the SPP-MP en-

semble has a lowerMAE. Since the SPP-MP can only

impact existing clouds, instead of triggering new

convection like the Control ensembles, removing

displacement errors between the observed and

forecast clouds can help identify how the SPP-MP

improves the cloud characteristics. In May, cloud

objects are too cold compared to the observations,

with the opposite occurring in January. The bias in

the ensemble BTs can be described by the differ-

ence in sizes between the observed and simulated

object, where observed objects smaller (larger)

than the simulated objects are moderately corre-

lated with negative (positive) biases.

5) Tracking the evolution of cloud objects, at the initi-

ation of the observed object the SPP-MP andControl

objects are smaller than the corresponding GOES

objects. This persists for about the first 5 h of an ob-

served object’s lifetime before simulated objects

become larger than the observed object. Only later in

an observed object’s life cycle is the paired Control

object smaller than the SPP-MP object, on average.

No clear distinction exists between the SPP-MP and

Control ensemble interest score and distance be-

tween the centers of objects.

In the proverbial stratospheric view of the overall

impact of SPP-MP as a method of increasing ensemble

forecast spread in the context of NOAA’s desire to

move toward a unified model system with single

physics plus various perturbation methods, SPP-MP

should probably be combined with SPP applied to

other parameterization schemes (i.e., PBL, LSM, ra-

diation, etc.) similar to Jankov et al. (2019). As stated

above, SPP-MP inherently cannot act on clear sky

areas whatsoever so it shouldn’t be expected to show

improved weather forecast capabilities in the very

short term as the internal perturbations take time to

manifest as cloud property changes that affect in-

coming radiation, convective cold pool development,

or anything else fundamental enough to change the

forecast model results. As such, convective-scale ‘‘day 1’’

forecasts are unlikely to see much change when using

SPP-MP in comparison to SPP-PBL for example.

However, microphysical and dynamical feedbacks do

occur using SPP-MP and its application might be better

suited to forecast lead times beyond 24h.

As this studymostly investigates the impact of the SPP

method on the 10.3mm BTs, future work will include

extending this analysis to other GOES-16 satellite BTs.

For example, unlike the 10.3mm BTs, the 6.2 or 6.9mm

BTs are sensitive to water vapor at different levels of the

troposphere and therefore can indicate how the SPP

impacts atmospheric water vapor. Additional studies

will focus on examining relationships between the sat-

ellite brightness temperatures and other aspects of the

model, such as the jet stream location and stability, as

well as incorporate other observations such as radar

reflectivity. In addition, the small ensemble size em-

ployed during this project is likely underdispersive with

respect to the spread in the ensemble BTs, and therefore

the inclusion of additional ensemble members should be

explored.
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